
Elliptic Cylinder Airborne Sampling and Geostatistical Mass Balance
Approach for Quantifying Local Greenhouse Gas Emissions
Jovan M. Tadic,́*,†,∇ Anna M. Michalak,† Laura Iraci,‡ Velibor Ilic,́§ Seb́astien C. Biraud,∥

Daniel R. Feldman,∥ Thaopaul Bui,‡ Matthew S. Johnson,‡ Max Loewenstein,‡ Seongeun Jeong,⊥

Marc L. Fischer,⊥ Emma L. Yates,‡ and Ju-Mee Ryoo‡

†Department of Global Ecology, Carnegie Institution for Science, Stanford, California 94305, United States
‡Earth Science Division, NASA Ames Research Center, Moffett Field, California, United States
§RT-RK Institute for Computer Based Systems, 21000 Novi Sad, Serbia
∥Earth and Environmental Sciences Area, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
⊥Energy Technologies Area, Lawrence Berkeley National Lab, Berkeley, California 94720, United States

*S Supporting Information

ABSTRACT: In this study, we explore observational, experimental, methodological, and
practical aspects of the flux quantification of greenhouse gases from local point sources by
using in situ airborne observations, and suggest a series of conceptual changes to improve
flux estimates. We address the major sources of uncertainty reported in previous studies by
modifying (1) the shape of the typical flight path, (2) the modeling of covariance and
anisotropy, and (3) the type of interpolation tools used. We show that a cylindrical flight
profile offers considerable advantages compared to traditional profiles collected as curtains,
although this new approach brings with it the need for a more comprehensive subsequent
analysis. The proposed flight pattern design does not require prior knowledge of wind
direction and allows for the derivation of an ad hoc empirical correction factor to partially
alleviate errors resulting from interpolation and measurement inaccuracies. The modified
approach is applied to a use-case for quantifying CH4 emission from an oil field south of
San Ardo, CA, and compared to a bottom-up CH4 emission estimate.

1. INTRODUCTION
Atmospheric measurements at local scales can be used to
provide a top-down constraint on emissions as well as to
validate and improve bottom-up emission inventories. Local
scale measurements can target various local sources, ranging
from the anthropogenic (urban centers, industrial activities,
agriculture, traffic, landfills) to the natural (volcanoes, wild fires,
marshlands). The lack of a standardized verification protocol
for measuring GHG fluxes from point sources has led to
uncertainty in quantifying, and by extension, mitigating these
point sources. This situation is particularly problematic because
urban populations are expected to double by 20501 and will
significantly influence GHG emissions, but mechanisms to
characterize these emissions are lacking.
Quantitative measurement, reporting, and verification

(MRV) will be critical to any international climate treaty, as
emphasized by a 2010 National Research Council (NRC)
report,2 and by the Intergovernmental Panel on Climate
Change.3 Verification based on direct observations of
atmospheric GHG concentrations could provide estimates of
emission reductions.4

To fill this need, the quantification of GHG emissions at high
spatial resolutions has become an area of active research. The
highly heterogeneous nature of anthropogenic emissions does
not lend itself well to the application of inverse modeling tools

developed primarily for regional/continental scale estimation of
biospheric fluxes.5 Several recent studies have examined the
feasibility of constraining greenhouse gas emissions at local
scales using ground-based,4,6 airborne,7−11 and space-based12

observations. Airborne observations, in particular, offer an
opportunity to capture GHG concentrations in the air entering
and exiting a focus area. Flux studies using airborne
measurements have also been conducted at local scales from
sources such as forest fires,13 volcanoes,14 leaks from natural gas
and oil operations15,16 and related accidents,15 emissions from
dairy farms,17,18 and landfills.18

Early applications of airborne observations for quantifying
local and urban emissions have exposed the high uncertainties
associated with baseline mass balance approaches at spatial
scales of 10s to 100s of km. For example, a study in
Indianapolis7 reported uncertainties of 80% (19.2 ± 15.4
μmol/m2s) for CO2 emissions, and 71% (0.14 ± 0.10 μmol/
m2s) (±1σ) for CH4. The flux quantification method used in
that study relied on airborne observations along a single
downwind “curtain” in combination with a kriging scheme,
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presuming direction-independent (constant) variability and
mass balance. In more recent studies, uncertainty estimates
were reduced to ∼43% (±1σ) for CH4 emissions from
Indianapolis,19 ∼ 30% (±1σ) for CH4 and SO2 emissions
from Alberta oil sands operations,11 and ∼29% (95%
confidence interval (CI)) for CH4 emissions from the Barnett
Shale basin.20 The uncertainty reduction is achieved through
more sophisticated quantification protocols: (a) introduction of
a second, up-wind curtain8,10,11 that captures both the upwind
and downwind concentration profiles, and (b) the reduction of
measurement time by using a second aircraft flying dense
horizontal transects to reduce interpolation errors.
More recent work using aircraft to measure GHG emissions

at small (∼1 km) spatial scales has claimed that methane
emissions from an individual facility can be measured to better
than 20% by combining in situ measurements of winds and
GHG concentration measurements using mass-flux integration
over controlled flight patterns covering the vertical extent of
plumes downwind of individual facilities.15

The factors contributing to uncertainties in the quantification
of fluxes from localized or point sources using airborne
measurements are listed and analyzed in Cambaliza et al.
(2014).9 The factors for these large uncertainties generally fall
into four categories: (1) observational, related to the ability of
the flight plan or sampling scheme to capture urban emissions
and background concentrations, the requirement for many
horizontal transects to get reasonable coverage, and the
necessity to know wind direction in advance for flight path
planning; (2) experimental, related to the availability of reliable,
accurate, and high frequency airborne sensors for all measured
quantities, including wind speeds and GHG concentrations; (3)
practical, involving air traffic control problems encountered
around urban centers; and (4) methodological, pertaining to
the availability of postprocessing/modeling tools that accurately
and precisely translate the observed spatiotemporal GHG
concentration patterns into GHG fluxes and their associated
uncertainties and the failure to exploit existing and observed
spatial concentration trends (especially characterizing the
concentration field below the aircraft profile).
In this study, we focus on the major observational,

experimental and methodological factors limiting the precision
of GHG flux estimation at local/facility scales. We explore if
and how modifying sampling protocols might be expected to
reduce uncertainty for these facility-scale flux estimates and
perhaps larger spatial scales if large-scale entrainment and
convection can be estimated. Our suggested modifications
include (1) changes in flight patterns, (2) interpolation
techniques and associated modeling of spatial variability, (3)
reduction in sampling time, and (4) a revised the approach to
mass balance. For the first modification, we use a flight pattern
design that maximizes capture of inflow and outflow, and
eliminates the need for prior knowledge of the predominant
wind direction (Section 2.1). For the second modification, we
develop a geostatistical approach that accounts for anisotropy
(zonal or directionally dependent variability) and variable
spatial means of atmospheric GHGs (Section 2.2.2, 2.2.3, and
Supporting Information (SI)). For the third modification, we
use winds measured by the aircraft simultaneous to the GHG
concentration measurements. For the final modification, we use
a mass balance approach not only to quantify the flux of the
atmospheric constituent of interest, but also to derive an
empirical correction factor to account for dynamic effects of

mass convergence within the domain of field measurements.
(Section 2.2.4).
These tools and approaches apply broadly to a range of

local/urban domains and choices of single or multiple airborne
platforms, including aircraft and unmanned aerial systems
(UAS) and can reduce uncertainty in mass balance character-
ization across spatial domains of 10s of km.

2. MATERIALS AND METHODS
2.1. Aircraft and Instruments. We developed and tested

the cylindrical sampling and geostatistical mass balance
approach by collecting and analyzing data from a flight covering
a 4 × 9 km area surrounding an oil field about 8 km south of
San Ardo, CA (35°57′ N, 120°52′ W), on 10/01/2015. This
area includes the eighth largest oil-producing field in California
with 7.8 million barrels of oil, and ∼1 million Mcf of natural gas
produced in 2015.21 The flight took place at around 20:30
UTC (local time 12:30 PM), a time when the planetary
boundary layer (PBL) has not yet reached its peak. Due to
quick sampling (10−15 min), it is reasonable to assume that
the PBL top remains at a stable height during the aircraft
sampling period.
Measurements were collected using an aircraft (Alpha Jet)

based at the National Aeronautics and Space Administration
(NASA) Ames Research Center, equipped with a Picarro 2301-
m cavity ring-down instrument for CO2, CH4 and H2O
measurements, GPS and inertial navigation systems that
provide latitude, longitude and altitude, and a Meteorological
Measurement System (MMS), which measures both dynamic
and static state variables. MMS, a NASA Ames-developed
airborne instrument package, provides calibrated, science-
quality, in situ measurements of static pressure, static
temperature, wind in three dimensions, GPS positions,
velocities, accelerations, pitch, roll, yaw, heading, angle of
attack, angle of sideslip, dynamic total pressure, and total
temperature. The primary products of MMS are barometric
pressure (precision of 0.1 hPa with an accuracy of ±0.3 hPa),
air temperature (0.1 K, ± 0.3 K), horizontal wind (0.1 ms−1, ±
1 ms−1), and vertical wind (0.1 ms−1, ± 0.3 ms−1) (https://
airbornescience.nasa.gov/instrument/MMS). Other derived
parameters are potential temperature, true air speed, turbulence
dissipation rate, and Reynolds number. This instrument has
been installed in several NASA aircraft in addition to the Alpha
Jet, including the ER-2, the DC-8, and the Global Hawk
unmanned aircraft, the WB-57F, and is flexible in terms of flight
pattern (i.e., not limited to straight or level flights only).
Further details of the aircraft and instruments can be found in
previous publications.22−24

2.2. Theory. 2.2.1. Optimization of the Projection Grid.
Cylinder-shaped profiles offer a substantial advantage over the
“curtain” type flight profile, because they can necessarily adapt
to any wind direction. In other approaches, the wind direction
needs to be determined either ahead of the flight or at the start
of the sampling phase, whereas in this approach this constraint
is relaxed. However, this approach requires a more
sophisticated subsequent analysis for calculating fluxes (Section
2.2.4).
Before the fitting, interpolations and flux calculation, all

spatially referenced data are converted to a Universal
Transverse Mercator (UTM) (Euclidean) coordinate system,
so that distances and angles can be computed using Euclidean
geometry over short distances.25 The GPS instrument records
raw data in latitude/longitude/altitude format based on

Environmental Science & Technology Article

DOI: 10.1021/acs.est.7b03100
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

B

http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b03100/suppl_file/es7b03100_si_001.pdf
https://airbornescience.nasa.gov/instrument/MMS
https://airbornescience.nasa.gov/instrument/MMS
http://dx.doi.org/10.1021/acs.est.7b03100


WGS84 spheroid earth model.26 The additional uncertainty in
the position of the aircraft introduced by the spatial distortions
in conversion to UTM system is <1 mm and is therefore
negligible compared to the 3−4 m horizontal uncertainty in
position reported by the GPS instrument.
An optimal 3D elliptical grid is fitted to the flight trajectory

following a three-step approach. First, we fit the optimal ellipse
into a vertically projected set of coordinates representing the
flight trajectory. Next we place an arbitrary number of
equidistant points (300 in this case) along the perimeter of
the ellipse optimized in the first step. In general, the optimal
number of points depends on the observed spatial variability of
all relevant variables. The potential dependence of the results
on details of optimal grid construction and projection can be
considered heuristically. The third step is the extension of the
discretized elliptical profile obtained in the second step and
involves matching the ceiling of the flight trajectory (every 50
m up to ∼2550 m).
Only nodes of the grid that reside above the ground level are

contained in the final projection grid, and customized software
built on Google Maps elevation data (https://developers.
google.com/maps/documentation/elevation/intro) is used to

eliminate underground points on the grid. The result is an
optimal 3D projection grid used for interpolation, projection,
and flux calculation.

2.2.2. Original Product-Sum Model and Proposed
Modifications. In this study we develop an alternative kriging
approach for modeling an anisotropic environment, using a
product-sum covariance model.27−29

This product-sum was initially developed for different
purposes - to model spatiotemporal covariance structures in
which a common unit of the distance between points does not
exist because of the different natures of spatial and temporal
axes. We observe that there is an analogy between problems of
modeling spatiotemporal covariance and covariance in
anisotropic conditions. In modeling spatiotemporal variability,
it is necessary to deal with two qualitatively different
spatiotemporal subspaces. Formally, the variability in these
spatiotemporal subspaces could require different theoretical
variogram models, and requires different units of distance.30 In
anisotropy, we face an analogous situation, with potentially
different types of variability in different directions. Therefore,
the product-sum model is applicable to anisotropic conditions,
and, as we show in this study, equivalent to the classical model

Figure 1. Horizontal-vertical 2D experimental (rainbow) and theoretical variograms (transparent blue) based on the product-sum covariance
(variogram) model for (a) CH4 (ppm), (b) U (E-W) (m/s), (c) V (N−S) (m/s), and (d) temperature (K). Red lines starting from the origin show
isolated vertical, γh,v(0, hv), and horizontal, γh,v(hh,0), variability represented using Gaussian (vertical) and exponential (horizontal) variogram model,
respectively. Theoretical variograms were fitted directly using raw spatiotemporal variograms (eq 3), and experimental variograms are shown only for
demonstrative purposes.
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of zonal anisotropy in the case where horizontal and vertical
directions represent principal anisotropic axes (i.e., when
anisotropy splits the space into two subspaces). We show
that there is a partial mathematical equivalency between these
two models, in the sense that every admissible set of sill
parameters in the classical model (three sill parameters, seven
parameters in total) can be expressed as an admissible set of sill
parameters (three sill parameters, six parameters in total) in the
product-sum model. The sill is the expected value of the
semivariance between two observations as the lag distance
tends to infinity.30

There is one important area for improvement in the manner
that the product-sum model has been applied in the past. The
original procedure27 assumed separate modeling of the spatial
and temporal covariance (variograms) and their later
unification into a spatiotemporal model in the final step. In
our study, this is equivalent to separating modeling the vertical
and horizontal covariance, if we assume temporal stationarity of
the wind and concentration fields (this assumption could be
problematic in that there is a risk of using the same air parcel as
it advects to a different location, which, when combined with
the potential that the field is actually nonstationary in
composition, could lead to artifacts in the analysis). The
procedure requires observations approximately in the same
horizontal location at multiple different altitudes. However,
aircraft trajectories are often not perfectly horizontally
collocated at different altitudes. As a result, we would need to
define a tolerance in order to apply the original approach,
which is also a part of the genuine modeling approach
suggested in De Iaco et al., 2001.27 To avoid defining a
tolerance, in this study we cater to specific properties of aircraft
trajectories and alter the original procedure by estimating all
covariance parameters simultaneously.
We broadly define the covariance as follows:

= + +C h h Z l h l h Z l l( , ) COV( ( , ), ( , ))vh,v h v h h v h v (1)

The equation shows that covariance (Ch,v) between two
points (Z) depends on their distance in horizontal direction
(hh) and distance in vertical direction (hv). lh and lv denote
arbitrary horizontal and vertical coordinate within the domain.
The product−sum covariance model is given as

= + +C h h k C h C h k C h k C h( , ) ( ) ( ) ( ) ( )h,v h v 1 h h v v 2 h h 3 v v (2)

where Cv and Ch are valid vertical and horizontal covariance
models, respectively.27,29 This model corresponds to the
horizontal-vertical variogram:

γ γ γ γ γ= + −h h h h k h h( , ) ( , 0) (0, ) ( , 0) (0, )h,v h v h,v h h,v v h,v h h,v v

(3)

where γh,v(hh,0) and γh,v(0, hv) are spatiotemporal variograms
for hv = 0 and hh = 0, respectively (see Figure 1 (red lines)). In
the original procedure, separately estimated horizontal
(“spatial”) and vertical (“temporal”) variogram components
are subsequently combined into a horizontal-vertical variogram
model, equivalent to spatiotemporal variogram in the genuine
embodiment of the approach.
Parameter k is estimated from the data:

=
+ −

k
k C k C C

k C k C

(0) (0) (0, 0)

(0) (0)
h h v v h,v

h h v v (4)

where khCh(0) and kvCv(0) are horizontal and vertical sills
(variances) obtained in modeling of separate horizontal and

vertical variograms. The only condition k has to fulfill in order
to create an admissible covariance model is

γ γ
< ≤k

h h
0

1
max{sill( ( , 0)); sill( (0, ))}h,v h h,v v (5)

Due to the specifics of airborne data, we estimated both the
covariance parameters and parameter k simultaneously. This
approach accounts for constraints that ensure that the model is
positive-definite.27 This simultaneous approach makes the
model more applicable to scattered data and data with variable
spatial coverage, as is often the case with airborne observations.
The choice of Gaussian and exponential variogram model for

all state variables was made based upon visual inspection of the
variograms (alternatively, the choice could have been done
purely based on the quality of fit). The forms of these
variograms are as follows:
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(7)

where σv
2 and σh

2 are the variances, lv and lh correlation length
parameters of the quantity being mapped, and σ2nug is the
nugget variance, typically representative of measurement errors
or microscale variability. The term nugget arises from the field
of variography and is defined as a discontinuity of the
covariance or variogram at the origin.30

Unlike the original procedure in De Iaco et al. (2001),27 we
modeled the variogram using only three steps. First, we
calculated a raw horizontal−vertical variogram:

γ = −h h y x y x( , )
1
2

[ ( ) ( )]h v i j
2

(8)

where γ is the raw horizontal-vertical variogram value for a
given pair of observations y(xi) and y(xj), and hh and hv are the
horizontal and vertical distances between the measurement
locations (xi and xj), respectively.
Subsequently, the theoretical variogram defined in eq 3 was

fitted to the raw variogram using nonlinear least-squares.
Finally, we calculated the horizontal-vertical covariance using
the following equation:

γ= −C h h C h h( , ) (0, 0) ( , )h,v h v h,v h,v h v (9)

Classical versus Novel Approach. As stated earlier, in the
classical approach to modeling zonal anisotropy, a nested
variogram structure is required for every direction in which
zonal anisotropy is identified. Applied to a specific case of zonal
anisotropy (often found in PBL), where principal anisotropic
subspaces represent horizontal and vertical directions, the
classical approach to modeling zonal anisotropy is given by
equation:30

γ γ γ γ= + + + + +h h h h h h h( ) ( ) ( ) ( )x y z x y z1
2 2 2

2
2 2

3

(10)
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Where hx and hy represent distances in orthogonal horizontal
directions, and hz represents vertical distance. Nested variogram
structures required for separate modeling of the horizontal (γ2)
and vertical (γ3) directions increase the number of estimated
parameters to seven, if modeling is based upon most common
theoretical variogram (covariance) models, for example
exponential or Gaussian (three sills, three range parameters
and a nugget). If we denote with “S” the sills corresponding to
γ1, γ2, and γ3 in classical approach, from eq 10 it follows that the
vertical sill is S1+S3 (corresponding to γ1 and γ3, after setting hx
and hy to zero), the horizontal sill is S1+S2 (corresponding to γ1
and γ2, after setting hz to zero), whereas in all other directions
the sill is given as S1+S2+S3. Fitting such a model to the
experimental data, especially in the case of noisy and/or sparse
observations, is nontrivial. As reported by De Iaco et al.
(2001),27 fitting the model to the data was identified as one of
two major problems when modeling spatiotemporal vario-
grams.
In this section we show that in this novel approach, fewer

parameters have to be estimated (6 vs 7). This can be done
either simultaneously or sequentially, where the latter approach
is used in the original implementation of the method described
in De Iaco et al. (2001).27 From eq 5 it follows that the
alternative approach is guaranteed to yield positive definite
covariance functions if parameter k (“global sill”) in the
product-sum model is between the sum of sills and the larger
separate sill. The comparison between eqs 3 and 10 shows that
partial sills (khCh(0) and kvCv(0)) in the product-sum model
correspond to sills S1, S2, and S3 in the classical approach in a
straightforward way:

= +k C S S(0) (horizontal sill)h h 1 2 (11)

= +k C S S(0) (vertical sill)v v 1 3 (12)

= + +k S S S (global sill)1 2 3 (13)

Thus, the requirement for the positive definiteness in the
product-sum model (eq 5) expressed as sill values in the
classical approach can be rewritten as

+ + < + + < + +S S S S S S S S S Smax( , ) 21 3 1 2 1 2 3 1 2 3
(14)

which is true for any positive set of values for S1, S2, and S3. It
follows that every possible combination of S1, S2, and S3 in the
classical approach is guaranteed to fulfill the admissibility
requirements of the product-sum model, that is, three sills in
the product-sum model can be parametrized in a way that
corresponds to partial sill values in the classical modeling
approach. Thus, these two approaches are equivalent in terms
of modeling variances along principal axes of anisotropy,
however, the product-sum model is more practical in that its
parameters are more easily estimated with either a simultaneous
or sequential approach.
2.2.3. Kriging Using Covariance Structure Based on

Product-Sum Model. Most common approaches to atmos-
pheric interpolation use various forms of kriging.7,9,11,20,31

Kriging is a geostatistical interpolation method in which the
estimated value is expressed as a linear combination of known/
measured values. The approach is based on first modeling the
spatial covariance structure of the data, usually through a
process known as variography or variogram analysis.30

Estimation of interpolation uncertainties is also obtained as
part of kriging. In the majority of atmospheric studies, a

relatively simple kriging method based on the assumption of
isotropic variogram (covariance) kernels is used, which cannot
account for the anisotropic atmospheric structure. Chiles̀ and
Delfiner (2012)30 describe details of the mathematical
foundations of kriging.
In addition to the problem of isotropy/anisotropy, the

presumption of a constant mean within the examined spatial
domain should be objectively evaluated. In Tadic ́ et al.
(2015a),31 a universal kriging30,32,33 method was substituted
for ordinary kriging, because the assumption of a constant
mean in the vertical direction was found not to be valid. That
study highlighted the need to assess trends in the observations,
and to implement a statistical model consistent with observed
variability.
The variance-ratio test34 is used here to assess whether the

introduction of a more complicated model of the mean is
justified. Although a trend with more auxiliary variables will
always be able to represent more of the inferred variability
relative to a simpler model, including auxiliary variables with
only a spurious correlation to mixing ratio can bias the model
and yield unreasonable estimates in poorly constrained areas.35

In the variance-ratio test, the weighted sum of squares (WSS)
of the orthonormal residuals is defined for an initial (X0
(constant mean), n × p) and an augmented (X1 (height and
height square used as covariates), n × (p + q)) model of the
trend (where X0 is a subset of X1) as

= −− − − − −Q Q X X Q X Xz Q zWSS ( ( ) )T T T
0 0 0 00

1 1 1 1 1
(15)

= −− − − − −Q Q X X Q X X Qz zWSS ( ( ) )T T T
1 1 1 11

1 1 1 1 1
(16)

where Q is the (generalized) covariance matrix of the data, z is
vector of observations, X0 corresponds to constant mean
presumption, and X1 corresponds to a model with two
explanatory variables, height and height squared. The derivation
of the Variance Ratio Test can be found in eqs 1-11 in the
original paper.
The significance of the improvement in model fit is evaluated

using the empirical probability distribution of the normalized
relative difference between WSS0 and WSS1,

35

=
−

− −

v p

n p q

WSS WSS

WSS
( )

0 1

1

(17)

and the significance level is quantified using an F-distribution
with q and n-p-q degrees of freedom (where n represents the
number of available measurements, p the number of
components in X0, and q the number of additional components
in X1 relative to X0; p and q equal 1 and 2, respectively). In this
study the variance-ratio test shows that the inclusion of
explanatory variables is not justified (see Section 3.2), so we use
ordinary kriging based on an anisotropic kernel. Nevertheless,
in a generalized approach, the universal kriging may be a viable
option.

2.2.4. Flux Calculation Framework. In other studies, the
mass flow (mol s−1) through the plane perpendicular to the
wind vector, downwind of the point source, is usually obtained
through integration of the products of the concentration (mol
m−3) enhancement above the background concentration [C]b
and the component of the wind vector perpendicular to the
plane (U⊥):

9,36
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∫ ∫= − ×
−

⊥F C C U x z([ ] [ ] ) d d
z

z

x

x

b
(sfc)

i

(18)

where zi is the depth of the convective boundary layer, z(sfc) is
the ground level, and ±x are the horizontal limits of the plume
width from the center point (for details on how relevant
variables were estimated in earlier studies, see Cambaliza et al.
(2014)9). The integration gives flux in mol s−1.
In practice, even under the stationarity assumption, applying

eq 18 can still be problematic. First, a basic prerequisite for
calculating the concentration enhancement is the knowledge of
the background concentration of the compound of interest.
Second, the optimal position of the standard measurement
curtain(s) is perpendicular to the wind vector, which assumes
knowledge of the field prior to the flight, or the ability to
diagnose and adjust the flight plan upon arrival at the sampling
location.
The cylindrical flight profile proposed in this study, in

conjunction with a new way to model the covariance structure,
avoids both of these problems. Specifically, the cylindrical flight
(and grid) profile relaxes the requirement of prior knowledge of
the wind directions, as some parts of the grid are guaranteed to
be nearly perpendicular to the wind vector. Second, instead of
integrating the wind (⊥) × concentration to the top of the PBL
and width of the plume, the product is integrated over the
entire grid. After these modifications, eq 18 becomes

∫ ∑= × ≅⊥
=

⊥F C U dP pC U
P

i

N

i i
0 1

i
(19)

where C is observed (interpolated) concentration, N is number
of nodes on the grid, P is its surface area, and pi is the area each
node represents, given as P/N. The projection of the wind
vector on the direction normal to the grid at each node is done
in UTM (Euclidean) space after transformation is done
(Section 2.2.1). In this approach, there is no need to isolate
the plume from the background concentration.
To calculate the fluxes using eq 19, the unit surface vectors

are first isolated at every node on the grid, and then the vector
dot product between the total wind vector and unit surface
vector is calculated. It gives the normal wind vector component
at every node.
Mixing ratios of all constituents of interest, in this case CO2,

CH4, and temperature, pressure and wind vector components
are interpolated to the grid using an ordinary kriging scheme,
based on the results of variance-ratio test34 (see Section 3.2 for
details on the method selection), coupled with product-sum
covariance models presented in Section 2.2.2. Mixing ratios at
each node are subsequently converted to absolute concen-
trations. The surface area for each node is calculated by dividing
the entire grid surface by the number of nodes. The flux was
then calculated using eq 19.
The new approach offers one additional way of controlling

wind interpolation and measurement errors compared to
“curtain” approaches. Namely, the flux of the background air
through the entire grid must be zero, as there is no
accumulation or depletion of the air mass within the grid
under the presumption that pressure and temperature are not
changing significantly during the observation period, and that
there is no ventilation through the top of the grid. This
condition is equivalent to

∮= × =⊥F C U Pd 0
P

air

0

air (20)

The air density at every node is calculated using the ideal gas
law:

=C P RT/r (21)

where Pr and T are pressure and temperature at the node,
respectively, and R is universal gas constant (∼8.31 Jmol−1K−1).
eq 20 indirectly provides an empirical correction factor (see
below), which can be used to correct flux estimates for the
compound of interest due to accumulated wind measurement
and interpolation errors, building off the point-wise kriging
error analysis and their cumulative effect on flux calculations as
discussed in Cambaliza et al. (2014).9 After the calculation of
air inflow and outflow from the grid, the imbalance in these
quantities indicates the degree to which wind measurements
and interpolations are inaccurate. According to Mays et al.
(2009),7 wind measurements represent the highest uncertainty
factor in flux quantifications from point sources. The maximum
likelihood estimate of true air flux through upwind and
downwind portions of the cylindrical grid is given as the
arithmetic mean of the entire inflow and outflow air fluxes,

̂ = +F F F( )air
1
2 air

inflow
air
outflow , through up- and downwind por-

tions of the grid. Thus, the ratio between measured and mean
air flux serves as an empirical correction factor that can be
applied to inflow and outflow flux of any constituent of the air
under the assumption that errors in wind measurements and
interpolations equally affect background air and its constituents,
or, in other words, that the ratio between F̂air and measured
inflow and outflow of the air can be applied as a correction
factor to total inflow and outflow of the compound of interest.
One additional weak assumption is required here, namely that
the correction factor is equally applicable to all nodes, or that
the error distributions are flat, because the correction factor is
calculated for the entire inflow and outflow portion of grid
surface, but applies locally to every node.
The derivation of the empirical correction factor represents

the third and last significant contribution of this study to the
development of urban outflow sampling protocols. It is made
possible by switching from planar “curtain”-shaped flight
profiles to cylindrical flight profiles, and alleviates the errors
stemming from inaccurate wind measurements and interpola-
tions as one of the most important sources of flux estimation
uncertainty. The physics of the model assume an impermeable
lid of the cylinder, and applicability of the method directly
depends on the validity of this presumption. This presumption
is appropriate when the fraction of source emissions leaving
through the “lid” of the cylinder is small. It can be evaluated by
analyzing the shape and intensity of the plume passing through
the grid. Since it is reasonable to expect that emissions create a
continuous plume, especially if there is only one source, the
presence of a plume that is contained within the grid and well
below the upper edge of the cylinder justifies the presumption
that there is little or no uplift that would affect the emission
calculation.

3. RESULTS AND DISCUSSION
3.1. Variogram Analysis. Figure 1 shows experimental and

theoretical variograms based on the product-sum covariance
(variogram) model for CO2, CH4, H2O, temperature, and two
wind components (U(E-W) and V(N−S)).
After close visual examination of the experimental vario-

grams, we chose Gaussian and exponential theoretical vario-
gram models to represent separate vertical and horizontal
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components within the product-sum model. The resulting
variogram confirmed a strong case of zonal anisotropy
(different sills and ranges in horizontal and vertical directions).
This reconfirmed that proper modeling of the covariance within
the PBL must account for a possible presence of zonal
anisotropy due to stratification. Figure 1 shows clearly that
omnidirectional theoretical models could hardly fit the
observed experimental variogram shape(s), due to a significant
difference in variogram (covariance) parameters along hori-
zontal and vertical directions. Variogram analysis yielded
optimized product-sum covariance models for all variables,
which were subsequently used in an ordinary kriging
interpolation scheme.
3.2. Kriging the Measured Data. Before we selected the

optimal kriging method, we ran the variance-ratio test34 to
check if the more complex model of the mean (using height
and height-squared as covariates) would be needed in this
particular case (Section 2.2.3). Results showed that vertical
gradients were not sufficient to justify the implementation of a
more complex model of the mean for parameters measured
during these two flights. Thus, the subsequent analysis used
ordinary kriging based on the anisotropic kernel (Section 2.2.2)
on all variables (CH4 mixing ratio, pressure, temperature, and
horizontal wind speed components).
Figure 2 shows the results of kriging CH4, and U and V wind

vector components to the projection grid. The relative
enrichment in CH4 concentrations on the downwind sections
of the grid is apparent, which qualitatively confirms the
emission activity at the site.

Elliptical grid shape allows convenient visual representations
of the wind field. The apparent feature in Figure 2d is the
appearance of the perfect Ekman spiral.37 The Ekman spiral, a
consequence of the Coriolis Effect, is a structure of currents or
winds that occurs near a horizontal boundary (here the ground
surface) in which the flow direction rotates as one moves away
from the boundary.37

Our study provides a measure of the consistency of wind
estimates through integration of the flux (mass flow) of the air
through upwind and downwind portions of the grid. In an ideal
case, the ratio should be close to unity, such that any deviation
from unity can be solely attributed to the emission from the
source. In a real-world case, the deviation from unity would also
result from inaccuracies in the wind estimates, interpolations,
problems with the physics of the model (e.g., basic
presumptions, like the absence of the vertical mass transfer),
and variability in the emission activity of the source. The ratio
b e t w e e n o u t fl ow a n d i n fl o w ( c om p u t e d a s

(∑ = ⊥pC Ui
N

i i i1 ,air )inflow/(∑ = ⊥pC Ui
N

i i i1 ,air )outflow) was found to be

0.989. The imbalance cannot be explained purely by the
emission activity of the source, as, for example, the effects of
10% change in relative humidity would lead to 2 g/kg in
concentration units (at 760 Torr and 25 °C), whereas the
observed imbalance of 1% of air translates into ∼12 g/kg, in
concentration units.
We also calculated the fraction of the overall air flux through

the grid that passes below the lowest measured point (below
flight trajectory, approximately at 350 m amsl), because
expected interpolation uncertainty is highest in that area. We

Figure 2. (a) Absolute values of U (m/s) and (b) V (m/s) wind vector components on the projection grid, (c) ordinary kriged CH4 (ppm), (d)
wind direction. (Background images: Google, Landsat/Copernicus).
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found that only 1.5% of the overall flux of air passing through
the grid actually passes below the flight trajectory.
3.3. Flux Calculation and Uncertainty Quantification.

The flux calculation method presented in Section 2.2.6,
together with the ordinary kriging approach, was applied to
quantify CH4 emission from the target site. The approach
yielded estimated emission of 540 kg/h at the time-of-flight.
We compared our estimates for CH4 emissions with a

bottom-up estimate which is derived using the most recent
2016 U.S. Environmental Protection Agency inventory38 and
the 2015 oil and gas production activity data from DOGGR
(http://www.conservation.ca.gov/dog/Pages/Index.aspx (ac-
cessed June 2016). Following the methodology in Jeong et al.
(2014),39 we estimate an annual emission rate of 740 kg CH4/
h.
The overall uncertainty of the airborne estimate of CH4

emission is affected by several independent factors.9 We
separately assessed the uncertainty due to interpolation errors
(for CH4 and wind vector components) using conditional
simulations.29 In our recent study we applied conditional
simulations specifically to address the problems of atmospheric
heterogeneity and provided details about its mathematical
framework.40 Briefly, conditional realizations (a.k.a. spatially
consistent Monte Carlo simulations), represent equally
probable realizations of a spatial random function. They are
“conditioned” in the sense that each realization honors
observed values at measurement locations.29 Conditional
simulations are affected by both the choice of theoretical
covariance model and the parametrization of the model. We
generated 500 conditional realizations of CH4 and wind vector
component fields (cross-covariances between them were not
taken into account) and calculated resulting emissions for each
combination of conditional realizations. The resulting variance
in the emission estimate represents the interpolation
uncertainty, and was found to be 112 kg/h (expressed as 1σ),
which represents ∼21% of the determined emission value. Note
that the emission probability distribution function resulting
from the ensemble conditional realizations represents a range of
possible solutions, rather than an actual error, and thus should
not be directly compared to error reported in other studies, if
they reflected actual error estimate.
In addition, we analyzed the sensitivity of the calculated

fluxes to the wind vector measurement accuracy and tried to
answer two questions: (a) what is the uncertainty of flux
estimates given that the absolute accuracy of the horizontal
wind vector calculated by MMS system was 0.1 m/s, and (b)
what is the requirement for wind measurement accuracy in
order to keep the emission uncertainty below 10% of the
reported value. To address the first question, we simultaneously
perturbed both U and V vector component by adding 0.1 m/s
in the first run, and subtracting in the second, and calculated
resulting emission estimates. The resulting error bounds were
estimated to be −6.5 and +7.9 kg/h, respectively. To address
the second question, we incrementally perturbed both V and U
until the emission estimated departed from the initial value by
10%. The obtained results were −0.7 and +0.6 m/s (the
average wind speed at all nodes of the grid was ∼8.5 m/s).
While the assumption of the wind stationarity is justified in
cases of relatively short sampling times (∼15 min in this study),
a systematic change of the wind during the course of sampling
would be manifested as a change with height, not with time,
given that the aircraft typically samples vertically (for detailed
domain size considerations see SI).

Apart from the analyzed sources of overall uncertainty, there
are components of the uncertainty resulting from the absence
of information about the eventual vertical mass transfer,
inaccuracies in CH4 measurement data, correlated transient
wind vector and/or CH4 measurement errors over the course of
measurement, uncertainty resulting from the selection of
theoretical covariance model and its actual parametrization
(see Cambaliza et al., 2014, for a detailed overview).

3.4. Discussion. We modified four critical elements in the
current urban outflow sampling protocols: flight pattern design,
the way covariance is modeled to account for anisotropy, the
selection of interpolation method that accounts for spatially
variable mean (not implemented in this study following the
variance-ratio test, but should remain a default approach in
cases where clear vertical gradient is found or suspected), and
the way mass balance is used to calculate the empirical
correction factor for reducing wind measurement and
interpolation errors.
The absolute flux variability through the grid was mainly

driven by wind variability. Thus, the most intense fluxes are
found near the top of the grid. However, useful information
about source emission strength is contained within the lower
portions of the grid, where absolute flux values through the grid
are relatively small. This emphasizes the importance of accurate
wind measurements and an accurate interpolation scheme for
the mass-balance approach, as small errors in balancing the
inflow and outflow of the air mass itself could yield substantial
errors in flux estimates.
The method presented here bridges the gap between direct

local flux quantification approaches, such as eddy covariance
measurements, and methods that operate at larger spatial scales,
based primarily on inverse modeling techniques. Its scalability
depends purely on the size of the grid, availability of the
observational data, and control of the basic prerequisites of the
physics the approach is based upon.
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